Old dogs and interns: An empirical analysis of the link between team diversity and performance in sound recording projects

Luigi Nasta – LUISS University
lnasta@luiss.it
Viale Pola 12, 00198 Rome (Italy)

Luca Pirolo – LUISS University
lpirolo@luiss.it
Viale Pola 12, 00198 Rome (Italy)

Patrik Wikstrom* – Queensland University of Technology
patrik.wikstrom@qut.edu.au
2 George St, Brisbane QLD 4000 (Australia)
Old dogs and interns: An empirical analysis of the link between team diversity and performance in sound recording projects

ABSTRACT

A significant amount of research has been carried out to investigate the existing bonds between team characteristics and team outcomes in contexts of social creativity. Specifically, how work group diversity affects its performance is of great relevance but unfortunately, there is no clear understanding of the diversity-performance relationship. Therefore, to improve our understanding of this phenomenon, it would be worthwhile to investigate further empirical settings. For this reason, we decided to study the music industry that, to our knowledge, has never been chosen as empirical setting for the application of the theoretical constructs linked to the topic of team diversity and performance. Our research aims at analyze the US music industry to study the relationship between job-related characteristics of team diversity and team performances.

Keywords: team diversity, team performance, music industry, creativity
Introduction

Creativity has mainly been examined by scholars on the basic principle that “it is generated by very talented individuals, gifted with a great imagination” (Glynn, 1996). Along with this perspective, previous studies focused on how ideas are generated and suggested that individuals are able to come up with a novel idea when they are naturally provided with a great intellectual ability or some other qualities that enable them to find innovative solutions (Glynn, 1996).

Even though extant studies on creativity primarily stress the individual perspective (Cahill et al., 1996), more recently, a large number of scholars have addressed the attention toward the importance of social factors as key contingencies to study and understand creativity (Amabile, 1996). Based on these recent studies, the idea of social creativity has been introduced to explain the creative outcome resulting from the interaction between two or more individuals (Flemingo et al., 2007).

Creative industries rely on an organization of the work based on a temporary approach through which human and non-human resources are pulled together on short term basis. Similarly, team works are characterized by a limited time horizon. As a consequence, people continuously look for new projects to join. This leads to a constant process of (re)combination of skills and competencies to reach valuable outcomes that researchers have started to investigate only recently.

A significant amount of research has been carried out to investigate the existing bonds between team characteristics and team outcomes in contexts of social creativity. Specifically, the effect of team diversity has been analyzed as firms become increasingly diverse and organizations start relying on cross-functional teams to handle complex and demanding issues. How work group diversity affects its performance is becoming ever more relevant but unfortunately, there is no clear understanding of the diversity-performance relationship. Indeed, nearly all dimensions of diversity that have been analyzed and researched have always provided mixed results: negative, positive or nonsignificant relationships with performance. Therefore, to improve our understanding of the relationship between diversity and performance, it would be worthwhile to investigate further empirical settings.
Among all creative industries, the music sector seems to be appropriate to investigate on this phenomenon. Indeed, music consumers usually love when their favourite artists work in duet with other favourite ones, as sales performances and international music awards confirm. Similarly, new artists can profit from the collaboration with famous artists in order to emerge in the music arena. Nevertheless, the music industry is one of the most competitive sectors and each artist, producer or label company competes to capture the highest value. Finally, the music industry presents all the features to be classified as a sector where cooperation and competition mechanisms coexist in explaining the competitors’ behaviours.

Since, to our knowledge, the music industry has never been chosen as empirical setting for the application of the theoretical constructs linked to the topic of team diversity and performance, we have determined to focus our study on its analysis. Our research focuses on determined, job-related, characteristics of team diversity such as functional background or industry experience. These specific characteristics have been chosen because of their pertinence with our objective.
CONCEPTUAL BACKGROUND AND HYPOTHESES

Key concepts

Team diversity

Diversity is continuously increasing within organizations because of the need of acting inside and outside their primary domain of work (Jackson, May, and Whitney, 1995). Simultaneously, organizations are implementing work teams with greater frequency to integrate the knowledge of workers across broad specializations (Sundstrom, Demeuse, and Futrell, 1990). By combining two of the most significant phenomena in the work place (diversity and work teams), organizations are achieving the goal of building more innovative and high performing structures.

Understanding the complexity of these phenomena is important for those researching how diversity affects group outcomes. Recent reviews on the effects of diversity in work groups (Jackson et al., 1995; Milliken and Martins, 1996) have contributed to our understanding of diversity in work teams, developing a vision of diversity as a “double-edged sword”. Moreover, studies focused on diversity in work groups have revealed that it can result in higher quality solutions together with a decrease in team cohesion (Milliken and Martins, 1996; McLeod and Lobel, 1992; O’Reilly, Caldwell, and Barnett, 1989). Nonetheless, other studies on this topic have showed inconsistency when compared to the preexisting results. Therefore, no clear and conclusive results are accounted for (Cohen and Bailey, 1997).

Team diversity mirrors the level of differences among the people working together in a team (Harrison and Klein, 2007). Diversity can be given by differences connected with demographic characteristics (age, gender, ethnicity), job-related characteristics (background, tenure, industry experience) and also with psychological traits, such as personality, attitude or even values.

The differences related to demographic variables can be linked to team performance both in a positive and negative way (Tsui and Gutek, 1999; van Knippenberg et al., 2004). The concept that
demographic diversity can improve the performance of a team derives from the informational diversity-cognitive resource perspective which points out that distributional differences can be used as indicators of available knowledge in opposing points of view (Cox and Blake, 1991; Williams and O’Reilly, 1998). Therefore, a more diverse team, in terms of demographic variables connected to the task, can prove more successful than a homogeneous team since it can provide different perspectives and a wider spectrum of knowledge.

Starting from this insight, Pelled (1996) divided work group diversity in terms of high job-related and less job-related attributes, where job relatedness is the degree to which the attribute includes experiences, skills and perspectives which can be connected to cognitive work tasks. Since job-relatedness can describe whether a type of diversity is capable of increasing performance, it is deemed to be, potentially, important. Diversity attributes, such as functional, educational, or industry background, capture experiences and perspectives significant for the tasks most work groups perform (Pelled, 1996). On one side, some scholars (Sessa and Jackson, 1995; Milliken and Martins, 1996) propose that this type of diversity has a significant and stronger impact on the task-relevant group processes and performances. On the other side, diversity attributes such as age, gender and race register a minor impact on the group’s task (Pelled, 1996; Pelled et al., 1999). Although these attributes may reflect a broader set of experiences, they are expected to be less related to the work being performed. As suggested by Zenger and Lawrence (1989), “Although age similarity may produce similarity in general attitudes about work... such attitudinal similarity is unlikely to have much direct bearing on conversations about technical work.” Instead, these attributes form the context of more general social relationships and are less directly associated with team objectives (Sessa and Jackson, 1995).

There have been some empirical supports to this classification made by Pelled (1996). For example, a study conducted by Simons et al. (1999) argued that high job-related elements of diversity, such as the educational level, the company tenure and the perception of environmental uncertainty, interact
with debate to influence top management. On the contrary, elements that are less job-related, such as age diversity, do not achieve similar outcomes. Therefore, debate can impact team outcomes especially when it is based on a set of different experiences and points of view relevant to tasks, rather than on other differences.

Hypotheses

Quantitative work experience

Work experience is most often conceptualized in quantitative terms, reflecting either the time or the amount of experience (Tesluk and Jacobs, 1998). Time indicators operationalize work experience as the length of time spent performing a job or task, whereas amount indicators operationalize work experience as the opportunity to perform or the number of times a task has been performed (Quinones et al., 1995). For example, an artist with 5 years of experience and 1 album realized is clearly substantially different from an artist with 3 years of experience and 3 albums realized. Therefore, each of the quantitative indicators relates to relevant components of work experience that are likely to affect a person’s performance in a team. Moreover, members of a team that have a stronger working experience or have already had the possibility of performing in the industry are likely to have gained more substantial job-specific knowledge and, therefore, should be more ready to focus their attention of team-specific issues in order to boost the performance in an interdependent team setting.

For these reasons, we propose:

H1: Teams work experience, in terms of time, is positively related to team performance.

H2: Teams work experience, in terms of amount, is positively related to team performance.

Interaction between two quantitative indicators of work experience should demonstrate a meaningful impact on team performance. Indeed, the combination of time and amount on work experience represents the concentration of relevant experience over time. According to Gioia and Poole (1984),
the experience of performing more and over a longer time should further reinforce the relevant knowledge that is necessary to facilitate performance.

We thus propose the following hypothesis:

\textit{H3: The interaction between the time and amount of experience is positively related to team performance.}

\textit{Intrapersonal Functional Diversity}

The diversity represented by the functional background of each team member, defined as functional diversity, refers to the measure in which team members are narrow functional specialists with prior experience in a restricted range of functions, or are broader generalists whose work experiences cover a wide variety of functional domains. It is our firm belief that such a conceptualization of functional diversity is bound to promote significant implications for team performance.

To our knowledge, there have been no attempts to empirically examine the significance of intrapersonal functional diversity for teams, but few attempts have been made to examine its significance for individual managers (Campion, Cheraskin, and Stevens, 1994; Hitt and Tyler, 1991). Moreover, according to Burke and Steensma (1998), intrapersonal functional diversity is important not only for individuals, but also for management teams. Indeed, the Authors argued that management teams, composed of people with wide-ranging functional backgrounds, will have broader “dominant logics” (Prahalad and Bettis, 1986) and will be less inclined to decision-making biases such as escalation of commitment and overconfidence. These propositions have not been directly tested, but some studies are intuitively showing support with some evidence. For example, Rulke (1996) found that teams of MBA students, formed using a functional generalist selection strategy, performed better at a management simulation exercise than teams formed using a functional specialist selection strategy.

Based on these notions, we propose:
H4: The intrapersonal functional diversity of a team will be positively associated with team performance.

METHODS

Sample and Data Collection

Our empirical study is based on an analysis of the commercial results obtained by 1074 albums in the U.S. music industry over the years 2000 – 2014. We focused on the U.S. market because its role in shaping the music industry is undisputed. Indeed, U.S. music sales grew by 0.8% to total $ 4.47 billion in 2013, accounting for 30% of global trade revenues (IFPI, 2014). These data affirmed America’s dominant position as the world’s largest music market with its nearest rival, Japan, experiencing a sharp 16.7% decline to total $ 3.01 billion.

The sample for this study was collected from two publicly available sources: Billboard.com and MusicBrainz.com.

From Billboard, we collected data on the chart position obtained by each album every week over the period considered. From MusicBrainz, we collected the following information: team size, projects completed by each team member, years of experience in the industry for each team member, number and type of functional roles covered by each team member, genre of the albums, release date of the albums, label behind the production of the album, label’s main activity.

Measures

Dependent Variable

Album score. The team performance variable has been calculated using the Top 200 weekly charts published by Billboard every Saturday from 2000 to 2014. Specifically, we decided to assign a score
for each album in the chart calculating the sum of the inverse numbers for every position obtained by
the album in the time frame considered. For example, if an album has been ranked for three weeks in
the 2nd, 5th and 10th position, the score will be the sum of $1/2 + 1/5 + 1/10$. To higher scores
correspond greater team performances over the analyzed period. Many studies have been using the
number of weeks in chart as variable to analyze (Bhattacharjee et al., 2007; Klein and Slonaker,
2010). We decided to include other information in order to measure the commercial performance of
an album over time. Indeed, we decided to combine weeks in chart with position in chart to measure
the quality of the performance in addition to the length.

Independent Variables

Intrapersonal functional diversity. Intrapersonal functional diversity has been measured by
Bunderson and Sutcliffe (2002) in their work on the intrapersonal functional diversity score for top
management teams. Thus, considering their approach we operationalize the independent variable as
follows:

$$\sum_{i=1}^{n} (1 - \sum_{j=1}^{P_{ij}})/n$$

where P_{ij} is the proportion of member i’s total years spent in role j, and n is the number of the team
members. Because we are unable to find information on time spent in each function, according to
previous studies (Cannella et al., 2008), we weight each team member’s roles equally. Finally, we
normalize the measure so that it ranges from 0 (low intrapersonal functional diversity) to 1 (high
intrapersonal functional diversity).

Experience-time diversity. Following an approach recommended by Allison (1978) for numeric
variables, we used the coefficient of variation (standard deviation divided by the mean) to measure
experience diversity both in terms of years spent in the industry and in terms of projects completed.
Thus, to assess experience-time diversity within teams, we divided each team’s standard deviation of years of experience by the team’s average number of years of experience.

Experience-amount diversity. Similarly to the approach above described, we assessed experience amount-diversity within teams by dividing each team’s standard deviation of projects completed by the team’s average number of projects completed.

Control variables

Major label. A binary variable that is set to 1 if the distributing label for a given album is one of the major companies operating in the music industry (Universal, Warner, Sony). A value of 0 denotes independent and smaller music labels. We consider this variable to have an impact on the success of music albums because, as shown by Goodley (2003), the major labels alone release about 30,000 albums annually and only a small fraction of the albums released are profitable and achieve the success indicated by appearing in the top charts (Seabrook 2003).

Release date. As shown by Montgomery et al. (2000), success of music albums might also be impacted by their time of release. Specifically, industry figures show that a large number of albums are released during the Christmas holiday period. To control for the holiday effect, we include a series of variables for each month. We prefer to use a variable for each month rather than a binary variable because we want to understand if there are other periods of the year which might have an impact on chart’s positions in addition to Christmas time.

Genre. The likelihood of entering in a really famous chart as Billboard could also depend on music genre on the premise that the artistic content of an album might vary across genres. For example, one could argue that a country album is less likely to enter in the Billboard chart because country music is typically less popular among end-users. Thus, we compute a binary variable that is equal to 1 if genre is ascribable to popular music (pop and rock); 0 otherwise. Similar studies on other creative industries have considered this variable as control (Cattani and Ferriani, 2008).
Label Type. A binary variable that is set to 1 if the distributing label for a given album is primary focused in the activity production rather than other activity. A value of 0 denotes what is called “imprint” activity. When a label is strictly a trademark or brand, not a company, then it is usually called an "imprint". An imprint is sometimes marketed as being a "project", "unit", or "division" of a record label company, even though there is no legal business structure associated with the imprint.

Team size. Research on group behaviour and performance has established that group size matters in order to explain group processes and outcomes (Goodman, Ravlin, and Argote, 1986). For this reason, we decided to control for team size since larger teams are typically associated with larger projects and it is important to control for any possible relationship between size and performance.

Year. We control for the effect of all unobserved factors (e.g., macroeconomic trends, changes in taste or fashion, and other factors that might affect the music industry) by including dummies for each year of the study period into the model.

Analysis

The hypotheses were tested using an ordinary least squares regression statistical model. We regressed album score on the control variables, main effect variables, and the interaction term in sequential steps.

The model can be described as following:

\[
\text{Album score} = \alpha_i + \beta_1(\text{Experience-Diversity Time}) + \beta_2(\text{Experience-Diversity Amount}) + \beta_3(\text{Intrapersonal Functional Diversity}) + \beta_4(\text{Experience-Diversity Time})*(\text{Experience-Diversity Amount}) + \beta_5(\text{Major Label}) + \beta_6(\text{Label Type}) + \beta_7(\text{Team Size}) + \beta_8(\text{Genre}) + \text{Year dummies} + \text{Month dummies} + \epsilon_i
\]
Results

Table 1 shows the correlations among all predictors, outcomes, and control variables. We performed several checks on the correlational properties of the data before testing our hypothesis. First, we reviewed the correlations among the independent variable shown in table 2. The median correlation magnitude (absolute value) was .06, and the correlation with the greatest magnitude was .32. As noted by Tsui et al. (1995), “There is no definitive criterion for the level of correlation that constitutes a serious multicollinearity problem. The general rule of thumb is that it should not exceed .75.” Similarly, Kennedy (1979) indicated that correlations of .8 or higher are problematic. As a second check, we examined the variance inflation factor (VIF) of each independent variable. The largest VIF in our regressions was less than 5.5, a sign that multicollinearity was not a problem (Guo et al., 1996).

As described earlier, the hypotheses were tested using an ordinary least squares regression statistical model. Using the F-test, we determined the significance of the model used. Indeed, with a p-value of zero to four decimal places, the model is statistically significant.

Table 2 shows the results of the regression with album score as the dependent variable. In model 1 we regressed the dependent variable album score on the control variables. Model 2 adds the impact of the main effect variables. Finally, model 3 includes the interaction term for the analysis of the quantitative time experience diversity effect on team performance.

Unexpectedly, the relationship between experience diversity expressed in terms of time and team performance is not significant. This suggest that others predictors might be the key diversity drivers of team performance. Indeed, while H1 was not supported, both H2 and H3 were.

H2 states that experience diversity in terms of amount would have positive associations with team performance. This hypothesis is supported for experience-amount diversity, which has a significant positive relationship with team performance (beta = .96, p < .01).
H3 states that intrapersonal functional diversity would be positively associated with team performance. This hypothesis is supported and intrapersonal functional diversity has a significant positive relationship with team performance (beta = .73, p < .01).

Contrary to our idea, H4 is not supported. The interaction term between experience diversity in terms of time and experience diversity in terms of amount shows a significant and negative relationship with team performance (beta = -.60, p < .01).

DISCUSSION

This study investigated the relationship between job-related diversity characteristics and team performance, specifically focusing on quantitative work experience and intrapersonal functional diversity. As expected, the results supported the hypotheses stating that these job-related diversity characteristics were positively associated with team performance in terms of scores obtained by musical albums in the US music market. Thus, diversity within teams appeared to have an impact on overall team performance.

The findings in the study were consistent with other attempts at addressing diversity at team levels (Pelled, 1996, Cannella et al., 2008). While most past research has addressed the impact of top management teams’ diversity on firm performance, this research clearly extends the results to creative teams that are less stable and uncertain work groups. Moreover, the research also extends the study of the relationship between team diversity and team performance to an original and unexplored empirical setting, the music industry.
LIMITATIONS

There are important limitations in this study that need to be addressed. First, the sample is drawn from the US market and the results may not be generalized to other countries where people might have different musical tastes and preferences. Future research is needed to address the diversity of teams and its impact on team performance for other industry markets, especially those that are not similar from a cultural point of view.

Second, given the research approach used in the present study it is impossible to determine whether the diverse members actually do significantly differ in their behaviour compared to non-diverse members. In order to understand behavioural differences other approaches such as participant observations and ethnography of creative teams are needed.

Finally, the regression analysis in this study suggests that there is a linear relationship between team diversity and team performance. Future research is needed to understand if non-linear relationships might exist in order to provide a more complete insight on the topic.
REFERENCES

Harrison, D. A., & Klein, K. J. (2007). What's the difference? Diversity constructs as separation, variety, or disparity in organizations. Academy of management Review, 32(4), 1199-1228

Jackson, S. E., May, K. E., & Whitney, K. (1995). Understanding the dynamics of diversity in decision-making teams. Team effectiveness and decision making in organizations, 204, 261

- Sessa, V. I., & Jackson, S. E. (1995). *Diversity in decision-making teams: All differences are not created equal*
Table 1. Correlations among Study Variables

<table>
<thead>
<tr>
<th></th>
<th>Album Score</th>
<th>Diversity-experience Time</th>
<th>Diversity-experience Amount</th>
<th>Intrapersonal Functional Diversity</th>
<th>Team Size</th>
<th>Major Label</th>
<th>Label Type</th>
<th>Genre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Album Score</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diversity-experience Time</td>
<td>-0.00804</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diversity-experience Amount</td>
<td>0.0279</td>
<td>-0.0284</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intrapersonal Functional Diversity</td>
<td>0.0919***</td>
<td>0.0388</td>
<td>0.523***</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Team Size</td>
<td>0.160***</td>
<td>0.325***</td>
<td>0.233***</td>
<td>0.248***</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major Label</td>
<td>0.0929***</td>
<td>-0.0365</td>
<td>0.0257</td>
<td>-0.0231</td>
<td>0.0133</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Label Type</td>
<td>0.00339</td>
<td>0.0778*</td>
<td>-0.0702*</td>
<td>0.0301</td>
<td>0.0194</td>
<td>-0.181***</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Genre</td>
<td>-0.0732*</td>
<td>-0.0482</td>
<td>0.0455</td>
<td>-0.0180</td>
<td>-0.0772*</td>
<td>0.0995***</td>
<td>-0.0804**</td>
<td>1</td>
</tr>
</tbody>
</table>

* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$
Table 2. Ordinary Least Squares Regression Results: Equations with Album Score as Dependent Variable (N = 1074)

<table>
<thead>
<tr>
<th></th>
<th>(1) Album Score</th>
<th>(2) Album Score</th>
<th>(3) Album Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team Size</td>
<td>0.186252**</td>
<td>0.195122***</td>
<td>0.190754***</td>
</tr>
<tr>
<td>Major Label</td>
<td>0.295993*</td>
<td>0.2616175*</td>
<td>0.217652</td>
</tr>
<tr>
<td>Label Type</td>
<td>0.511723</td>
<td>0.0613181</td>
<td>0.0670782</td>
</tr>
<tr>
<td>Genre</td>
<td>-0.238963*</td>
<td>-0.2478281*</td>
<td>-0.2506435*</td>
</tr>
<tr>
<td>January</td>
<td>Omitted</td>
<td>Omitted</td>
<td>Omitted</td>
</tr>
<tr>
<td>February</td>
<td>0.4472588</td>
<td>0.5326757</td>
<td>0.5160925</td>
</tr>
<tr>
<td>March</td>
<td>0.3790161</td>
<td>0.4288371</td>
<td>0.4880137</td>
</tr>
<tr>
<td>April</td>
<td>-0.0923688</td>
<td>-0.0715568</td>
<td>-0.0203386</td>
</tr>
<tr>
<td>May</td>
<td>0.5573094*</td>
<td>0.5491876*</td>
<td>0.5231824</td>
</tr>
<tr>
<td>June</td>
<td>0.3572837</td>
<td>0.4066386</td>
<td>0.4043823</td>
</tr>
<tr>
<td>July</td>
<td>-0.2259897</td>
<td>-0.2455707</td>
<td>-0.2579074</td>
</tr>
<tr>
<td>August</td>
<td>0.0012968</td>
<td>-0.004446</td>
<td>0.0024817</td>
</tr>
<tr>
<td>September</td>
<td>0.3606925</td>
<td>0.3740416</td>
<td>0.3724533</td>
</tr>
<tr>
<td>October</td>
<td>0.2489918</td>
<td>0.25402905</td>
<td>0.2405114</td>
</tr>
<tr>
<td>November</td>
<td>0.4424446</td>
<td>0.3454605</td>
<td>0.3379874</td>
</tr>
<tr>
<td>December</td>
<td>0.4444824</td>
<td>0.359543</td>
<td>0.3771762</td>
</tr>
<tr>
<td>2000</td>
<td>Omitted</td>
<td>Omitted</td>
<td>Omitted</td>
</tr>
<tr>
<td>2001</td>
<td>0.0461153</td>
<td>-0.2322882</td>
<td>-0.0901597</td>
</tr>
<tr>
<td>2002</td>
<td>0.5098735</td>
<td>0.2733743</td>
<td>0.4420858</td>
</tr>
<tr>
<td>2003</td>
<td>0.033797</td>
<td>-0.3378021</td>
<td>-1.1469704</td>
</tr>
<tr>
<td>2004</td>
<td>0.2486654</td>
<td>-1.287496</td>
<td>-0.097525</td>
</tr>
<tr>
<td>2005</td>
<td>-1.1489334</td>
<td>-0.6227114</td>
<td>-0.4879101</td>
</tr>
<tr>
<td>2006</td>
<td>-1.1632854</td>
<td>-0.5676045</td>
<td>-0.453445</td>
</tr>
<tr>
<td>2007</td>
<td>-1.1788356</td>
<td>-0.5995151</td>
<td>-0.4692766</td>
</tr>
<tr>
<td>2008</td>
<td>-0.180809</td>
<td>-0.446192</td>
<td>-0.274954</td>
</tr>
<tr>
<td>2009</td>
<td>-0.4787652</td>
<td>-0.9440129*</td>
<td>-0.8378011**</td>
</tr>
<tr>
<td>2010</td>
<td>-0.3667078</td>
<td>-0.8358388</td>
<td>-0.7003205</td>
</tr>
<tr>
<td>2011</td>
<td>-0.333094</td>
<td>-0.7022265</td>
<td>-0.55106</td>
</tr>
<tr>
<td>2012</td>
<td>-0.1429491</td>
<td>-0.5884778</td>
<td>-0.461631</td>
</tr>
<tr>
<td>2013</td>
<td>-0.3217689</td>
<td>-0.7817246</td>
<td>-0.6093246</td>
</tr>
<tr>
<td>2014</td>
<td>-0.4382747</td>
<td>-0.891835*</td>
<td>-0.7604785</td>
</tr>
<tr>
<td>Diversity-experience Time</td>
<td>-2.228473*</td>
<td>0.0980776</td>
<td></td>
</tr>
<tr>
<td>Diversity-experience Amount</td>
<td>0.0543585</td>
<td>0.9613387**</td>
<td></td>
</tr>
<tr>
<td>Intrapersonal Functional Diversity</td>
<td>.7981034**</td>
<td>.7389902**</td>
<td></td>
</tr>
<tr>
<td>Exp-Time*Exp-Amount</td>
<td>-6.014214**</td>
<td>-6.014214**</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.468529</td>
<td>0.7096289</td>
<td>1.089376</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.703701</td>
<td>0.0844888</td>
<td>0.0943475</td>
</tr>
<tr>
<td>N</td>
<td>1074</td>
<td>1074</td>
<td>1074</td>
</tr>
</tbody>
</table>

*p < 0.05, **p < 0.01, ***p < 0.001